

Radiance Cohousing Passive House in Saskatoon?

Presenter: Michael Nemeth

Member of Radiance Cohousing (Future Resident)

& Passive House Consultant on Project

Wolf Willow Cohousing – Shannon Dyck

Cohousing

- Wolf Willow Cohousing has been a huge inspiration
- Privacy of individual homes, but with access to small village outside your door (yard, common house...)
- Consensus decision making brings people together

Google

Location

Pleased to join the thriving, walkable community of Riversdale.

A collaborative, green housing initiative.

- Permaculture design
 - Urban food production, gardening
 - Water efficiency and rainwater management
 - Environmentally regenerative practices
- Build in a walkable, bike-able neighbourhood
- Some photovoltaics
- Electric Vehicle ready
- Affordability modest size
 - + aiming for lower monthly cost of ownership due to reduced utilities

BLDG Studio

Passive House?

We aim to meet the Passive House standard.

- No reliance on gas and reduce overall reliance on fossil fuels and inevitable rising costs.
- Prudent action against climate change (Factor 9)
- 90% heating energy savings
- Cost-effective net-zero ready?
- A nod to those who have come before us.

Building Parameters (overview)

- Site Selection
- Orientation for Solar Access
- Multifamily saves exterior walls
- Walls (R70 | U0.081 W/m²K) (18" | 46cm)
- Roof (R100 | U0.057 W/m²K)
- Underslab / Basement Walls (12" | 30cm EPS)
- Windows (R6.5 | U0.85 W/m²K)
- Shading (1m, 0.25m above windows)
- Ventilation (90%+ Effectiveness)

Site Selection

- Solar Access
- Mixed Use Zoning

 Somewhat inspired by layout at Vauban

Orientation / Layout

- Oriented so each unit has a south exposure
- Shared party walls save energy
- Rows don't shade each other
- Grade beam on piles at this point, 4" slab on main floor, with no basements
 - Except under common house (cold room for vegetables, utilities)
- Would like to keep main floors wheel chair accessible
- Space efficient design
 - Keep storage to a minimum

Vauban PlusEnergy Homes

Walls

- R70 (U0.081 W/m²K)
- 18" 46 cm
- Examined various wall types:
- Double stud wall
 - Concern with air leaks at rim joist (0.6 ACH?)
 - Thermal bridge at floor
 - Service cavity?
 - May revisit
- SIPS
 - Not thick enough
- ICF
 - Amount of concrete (embodied carbon, cost)
 - Not thick enough

Option 1 Truss Wall

- Total construction budget 216/ft^2
- Cellulose insulation derived from natural materials
- Complications coordinating prefab with onsite construction
- More risk in price, more parties involved

Walls

Option 2 EIFS Wall

- Total construction budget 201/ft^2
- Lower cost / better affordability
- Simple installation
- Acrylic stucco
- Higher R value
- Embodied energy greatly outweighed by lifecycle heating energy

Insulation – Global Warming Potential Payback

Embodied Carbon + Blowing Agent

325 Low Profile Fixed as per EN ISO 10077-2 and EN673

		U frame				Frame Height
	U-Factor Total Window	(head,jamb,sill)	Ψ	U centre of Glass	SHGC centre	(head,jab,sill)
Glazing	(W/m ² -K)	(W/m ² -K)	(W/m-K)	(W/m^2-K)	of glass	(mm)
272-arg-Cl-arg-180, se	0.85	1.31	0.024	0.716	0.372	36.9
180-arg-Cl-arg-180, se	0.87	1.31	0.024	0.742	0.560	36.9

Notes:

- 1. U-value simulations performed according to EN 673 and EN ISO 10077-2 using Therm 6 and BFRC EN 673 calculation spreadsheet
- 2. SHGC simulation used Window 6.3
- 3. Cl is clear glass
- 4. arg is 90% argon, 13mm air gap
- 5. 272 is Cardinal's 272 low-e, 3 mm
- 5. 180 is Cardinal's 180 low-e, 3 mm
- 6. se is Edgetech's Super Spacer (E-class)
- 7. The size was 1200mm x 1500mm as per standard North American ratings
- 8. See report ILF11001w-g for product information

Ventilation

- Zehnder ComfoAir 200
- 90% effective plus
- Has free-cooling bypass option for night purge
- Electric defrost
- Pinwheel Building Supplies in St. Catharines is importing them from US and selling them
 - \$2700 before shipping and duty
- We are very interested in using their packaged flex ductwork and diffusers
 - Should significantly reduce labour

Passive House verification

15.3 kWh/m²

by monthly method

14.9 kWh/m² by annual method

15 W/m² too high to heat only by ventilation air

Annual Heating Balance

- Large passive solar gains
- a 55 kWh/m² building

•	Electric annual cost is similar to gas, for space(assuming drain water heat recovery)
•	This is for the 5 unit – 2+ level building
	 per unit, per year -> total - \$1615/5 = \$323, h

Electric infloor in bathrooms, etc an option

Offset power with PV? Green energy investments?

Installed Costs:

Minimum Charge

Heating Energy Cost

Annual Cost:

DHW Energy Cost

Efficiency:

\$/kWh:

```
Heating with Electric or Gas?
                                               e heating and domestic hot water
                                               neat only - $1039/5 = $208
    Electric baseboard is low cost to install
```

Option 1: Electric Heat

TBD

0.11

\$1,039

\$577

\$1,615

Option 2: Gas Furnace

TBD

0.95

0.02

\$1,131

\$209

\$116

\$1,457

Considering a District Energy System (DES)

- Less costly to install piping along with other site services
- Opportunity to do biomass, gasifier, heat pump...
- Easy way to add some cooling in future
- May only install piping now

Implementation of DES

- Not sized for full load
 - 50% of load meets 80%+ of annual energy
 - Electric will back up
- Lower cost than infloor
 - Comfort of infloor not seen in high performance envelopes
 - Floor will be ~20°C
- DHW heating would be supplemented as well

Solar Thermal DHW?

- Our windows are our space heating solar thermal collectors
- For DHW, same cost PV system can be shown to heat more hot water annually
- Despite lower efficiencies with PV, net-metering to the grid is never full – a hot water tank reaches its max temperature often
 - Helps to keep things simpler, easier to maintain, more likely to be repeated.

Getting it built.

- Preliminary drawings and budget pricing complete.
- Proceeding with construction drawings over the winter.
- Aiming to begin construction in the spring.
 - Spring 2016 move in?
 - 3 units currently available.

www.radiancecohousing.ca
twitter.com/britebuildings
www.facebook.com/radiancecohousing

